Role of isoprene in secondary organic aerosol formation on a regional scale

نویسندگان

  • Yang Zhang
  • Jian-Ping Huang
  • Daven K. Henze
  • John H. Seinfeld
چکیده

[1] The role of isoprene as a source of secondary organic aerosol (SOA) is studied using laboratory-derived SOA yields and the U.S. Environmental Protection Agency regionalscale Community Multiscale Air Quality (CMAQ) modeling system over a domain comprising the contiguous United States, southern Canada, and northern Mexico. Isoprene is predicted to be a significant source of biogenic SOA, leading to increases up to 3.8 mg m 3 in the planetary boundary layer (PBL, defined as 0–2.85 km) and 0.44 mg m 3 in the free troposphere over that in the absence of isoprene. While the addition of isoprene to the class of SOA-forming organics in CMAQ increases appreciably predicted fine-particle organic carbon (OC2.5) in the eastern and southeastern U.S., total OC2.5 is still underpredicted in these regions. SOA formation is highly sensitive to the value of the enthalpy of vaporization of the SOA. The role of isoprene SOA is examined in a sensitivity study at values of 42 and 156 kJ mol ; both are commonly used in 3-D aerosol models. Prediction of ambient levels of SOA in atmospheric models remains a challenging problem because of the importance of emissions inventories for SOA-forming organics, representation of gas phase atmospheric chemistry leading to semivolatile products, and treatment of the physics and chemistry of aerosol formation and removal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions

[1] The oxidation of isoprene (2-methyl-1,3-butadiene) is known to play a central role in the photochemistry of the troposphere, but is generally not considered to lead to the formation of secondary organic aerosol (SOA), due to the relatively high volatility of known reaction products. However, in the chamber studies described here, we measure SOA production from isoprene photooxidation under ...

متن کامل

Reactive intermediates revealed in secondary organic aerosol formation from isoprene.

Isoprene is a significant source of atmospheric organic aerosol; however, the oxidation pathways that lead to secondary organic aerosol (SOA) have remained elusive. Here, we identify the role of two key reactive intermediates, epoxydiols of isoprene (IEPOX = beta-IEPOX + delta-IEPOX) and methacryloylperoxynitrate (MPAN), which are formed during isoprene oxidation under low- and high-NO(x) condi...

متن کامل

Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest

Isoprene is the most abundant non-methane biogenic volatile organic compound (BVOC), but the processes governing secondary organic aerosol (SOA) formation from isoprene oxidation are only beginning to become understood and selective quantification of the atmospheric particulate burden remains difficult. Organic aerosol above a tropical rainforest located in Danum Valley, Borneo, Malaysia, a hig...

متن کامل

Photo-oxidation of Isoprene with Organic Seed: Estimates of Aerosol Size Distributions Evolution and Formation Rates

Indoor smog chamber experiments have been conducted to investigate the dynamics of secondary organic aerosol (SOA) formation from OH-initiated photo-oxidation of isoprene in the presence of organic seed aerosol. The dependence of the size distributions of SOA on both the level of pre-existing particles generated in situ from the photo-oxidation of trace hydrocarbons of indoor atmosphere and the...

متن کامل

Isoprene forms secondary organic aerosol through cloud processing: model simulations.

Isoprene accounts for more than half of non-methane volatile organics globally. Despite extensive experimentation, homogeneous formation of secondary organic aerosol (SOA) from isoprene remains unproven. Herein, an incloud process is identified in which isoprene produces SOA. Interstitial oxidation of isoprene produces water-soluble aldehydes that react in cloud droplets to form organic acids. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007